119 research outputs found

    A Methodology for daylight optimisation of high-rise buildings in the dense urban district using overhang length and glazing type variables with surrogate modelling

    Get PDF
    Urbanization and population growth lead to the construction of higher buildings in the 21st century. This causes an increment on energy consumption as the amount of constructed floor areas is rising steadily. Integrating daylight performance in building design supports reducing the energy consumption and satisfying occupants' comfort. This study presents a methodology to optimise the daylight performance of a high-rise building located in a dense urban district. The purpose is to deal with optimisation problems by dividing the high-rise building into five zones from the ground level to the sky level, to achieve better daylight performance. Therefore, the study covers five optimization problems. Overhang length and glazing type are considered to optimise spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). A total of 500 samples in each zone are collected to develop surrogate models. A self-adaptive differential evolution algorithm is used to obtain near-optimal results for each zone. The developed surrogate models can estimate the metrics with minimum 98.25% R2 which is calculated from neural network prediction and Diva simulations. In the case study, the proposed methodology improves daylight performance of the high-rise building, decreasing ASE by approx. 27.6% and increasing the sDA values by around 88.2% in the dense urban district. - Published under licence by IOP Publishing Ltd.We would like to thank Cemre Cubukcuoglu for the collaborative work while implementing the optimisation algorithm. M. Fatih Tasgetiren, who is partially supported by the National Natural Science Foundation of China (Grant No. 51435009), acknowledges the HUST project in Wuhan.Scopu

    A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

    Full text link
    The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs

    Building collaboration in multi-agent systems using reinforcement learning

    Get PDF
    © Springer Nature Switzerland AG 2018. This paper presents a proof-of concept study for demonstrating the viability of building collaboration among multiple agents through standard Q learning algorithm embedded in particle swarm optimisation. Collaboration is formulated to be achieved among the agents via competition, where the agents are expected to balance their action in such a way that none of them drifts away of the team and none intervene any fellow neighbours territory, either. Particles are devised with Q learning for self training to learn how to act as members of a swarm and how to produce collaborative/collective behaviours. The produced experimental results are supportive to the proposed idea suggesting that a substantive collaboration can be build via proposed learning algorithm

    Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems

    Get PDF
    This paper presents the first investigation on applying a particle swarm optimization (PSO) algorithm to both the Steiner tree problem and the delay constrained multicast routing problem. Steiner tree problems, being the underlining models of many applications, have received significant research attention within the meta-heuristics community. The literature on the application of meta-heuristics to multicast routing problems is less extensive but includes several promising approaches. Many interesting research issues still remain to be investigated, for example, the inclusion of different constraints, such as delay bounds, when finding multicast trees with minimum cost. In this paper, we develop a novel PSO algorithm based on the jumping PSO (JPSO) algorithm recently developed by Moreno-Perez et al. (Proc. of the 7th Metaheuristics International Conference, 2007), and also propose two novel local search heuristics within our JPSO framework. A path replacement operator has been used in particle moves to improve the positions of the particle with regard to the structure of the tree. We test the performance of our JPSO algorithm, and the effect of the integrated local search heuristics by an extensive set of experiments on multicast routing benchmark problems and Steiner tree problems from the OR library. The experimental results show the superior performance of the proposed JPSO algorithm over a number of other state-of-the-art approaches

    Data for: Ensemble of Metaheuristics for Energy-Efficient Hybrid Flowshops: Makespan versus Total Energy Consumption

    No full text
    Data Fil

    Future Trends and Current State of Smart City Concepts: A Survey

    Get PDF
    Intelligent systems are wanting for cities to cope with limited spaces and resources across the world. As a result, smart cities emerged mainly as a result of highly innovative ICT industries and markets, and additionally, they have started to use novel solutions taking advantage of the Internet of Things (IoT), big data and cloud computing technologies to establish a profound connection between each component and layer of a city. Several key technologies congregate to build a working smart city considering human requirements. Even though the smart city concept is an advanced solution for today's cities, recently, more living spaces should be discovered, and the concept of a smart city could be moved to these alternative living spaces, namely floating cities. The concept of a floating city emerged as a novel solution due to rising sea levels and land scarcity in order to provide alternative living spaces for humanity. In this article, our main research question is to raise awareness on the current state of smart city concepts across the world by understanding the key future trends, including floating cities, by motivating researchers and scientists through new IoT technologies and applications. Therefore, we present a survey of smart city initiatives and analyze their key concepts and different data management techniques. We performed a detailed literature survey and review by applying a complex literature matrix including terms, like smart people, smart economy, smart governance, smart mobility, smart environment, and smart living. We also discuss multiple perspectives of smart floating cities in detail. With the proposed approach, recent advances and practical future opportunities for smart cities can be revealed. © 2013 IEEE
    • …
    corecore